暴风中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

今天的课堂,和蔼教授将带领叶寒、秦易、许黑、蒋尘、周游五位同学,以博弈论为核心,拆解“一次游戏”与“多次游戏”的不同玩法。我们会从考试作弊的收益计算切入,结合商业监管、体育赛事的真实案例,穿插心理学的“即时满足偏差”、哲学的“功利主义与义务论”,最终理解:人生是场“无限游戏”,所谓“远见”,就是不用一次游戏的策略应对多次挑战,不用有限规则套无限未来。

上课铃刚落,教授手里拿着一张模拟试卷走进教室,笑着问:“同学们,有没有人曾想过‘就作弊这一次,应该不会被发现’?或者觉得‘偶尔钻次规则空子,没什么大不了’?”

秦易有点不好意思地举手:“教授,我初中时一次数学测验没复习好,就偷偷看了同桌的选择题,当时觉得‘就一次,分数上去就行’,后来没被发现,还庆幸了好久。”

许黑也点头:“我身边有人打游戏时用外挂,说‘就爽这一局’,结果后来被封号了,之前攒的装备全没了。”

教授点点头:“这就是我们今天要聊的核心——一次游戏和多次游戏,玩法天差地别。很多人栽跟头,就是把‘多次游戏’当成了‘一次游戏’来应对。我们先从博弈论的基础说起,博弈论分两类:零和游戏(比如下棋,你赢我输)和非零和游戏(比如合作做生意,可能双赢、双输,也可能一赢一输)。大家常说‘追求双赢’,但非零和游戏里,有个很有意思的现象:‘双输’反而最容易稳定,这就是纳什均衡。而要实现双赢,不仅要理性,更要‘敢信对方不耍赖’——但生活里的博弈,大多不是‘一锤子买卖’,而是反复进行的‘多次游戏’,这时候策略就得变了。”

“我们先算笔账,就用考试作弊的例子。”教授在黑板上写下假设条件,“假设全班只有张三作弊,被发现概率5%。没被发现,他多拿10分(收益+10);被发现,得0分(损失-100)。大家算算,一次考试里,张三作弊的‘收益期望’是多少?”

蒋尘拿起笔飞快计算:“10乘以95%,减去100乘以5%……10x0.95=9.5,100x0.05=5,所以9.5-5=4.5?那他作弊好像赚了?”

“没错,一次游戏里,期望收益是正的4.5,看起来‘合算’。”教授话锋一转,“但如果考试不是一次,而是k次呢?比如10次、20次、30次,而且只要有一次被发现,之前所有分数清零,损失是100k。大家再算10次考试的情况:全部作弊成功的概率是95%的10次方,大概60%;收益是10x10=100,损失是100x10=1000。期望收益就是0.6x100 - (1-0.6)x1000=60-400=-340?不对,教授,我是不是算错了?”

教授笑着纠正:“公式应该是‘成功时的收益x成功概率 - 失败时的损失x失败概率’,也就是0.95^kx10k - (1-0.95^k)x100。当k=10时,0.95^10≈0.6,所以0.6x100 - 0.4x100=60-40=20,这时候期望还是正的。但k=20时,0.95^20≈0.36,0.36x200 - 0.64x100=72-64=8,快接近零了;k=30时,0.95^30≈0.21,0.21x300 - 0.79x100=63-79=-16,这时候就亏了;k=100时,0.95^100≈0.0059,0.0059x1000 - 0.9941x100≈5.9-99.41=-93.51,几乎肯定亏。”

叶寒皱眉:“可现实里,有人会想‘我就作弊一次,以后再也不做’,这样不就只承担一次风险吗?”

“这就涉及到心理学里的‘即时满足偏差’和‘行为强化效应’。”教授解释道,“人天生更看重‘眼前的好处’,而忽略‘未来的风险’——一次作弊成功,拿到高分的‘甜头’会强化这个行为,下次遇到没复习好的情况,就会忍不住再试。就像有人第一次闯红灯没被撞,下次就更容易闯红灯;第一次撒谎没被拆穿,下次就更容易撒谎。行为心理学里有个‘操作性条件反射’:得到正反馈的行为,会反复出现。所以‘只作弊一次’的想法,大多是自欺欺人。”

“那怎么才能阻止这种‘侥幸心理’?”周游问,“是不是只能靠加大处罚?”

“加大处罚是关键,但更重要的是‘改变游戏规则’——让‘一次作弊的损失’覆盖‘所有过往收益’。”教授举例子,“英美股市为什么健康?因为一旦发现财务造假,不仅要没收这次的非法所得,还要罚到倾家荡产,甚至追究刑事责任。比如安然公司造假,高管坐牢,投资者获得巨额赔偿,公司直接破产——这种‘一次作弊就清盘’的规则,让大多数人不敢冒险。再看美国的假货少,不是因为美国人道德高,而是一旦造假被发现,要向所有消费者赔偿,比如某品牌奶粉造假,可能要赔几千万美元,一次就倒闭。”

“但体育赛场好像不一样?”叶寒追问,“比如阿姆斯特朗,七届环法冠军,后来被查出用禁药,头衔被撤了,但他之前赚的上千万美元还在,现在资产还有5000万。如果他不用禁药,可能一个冠军都没有,这不就是‘一次作弊的收益大于损失’吗?”

“你说到了点子上——规则不同,玩法就不同。”教授点头,“体育赛场的问题在于‘一次作弊的收益太高,损失太低’。阿姆斯特朗用禁药,得到的是冠军头衔、商业合同、上亿收入;被发现后,只是撤回头衔,损失部分代言,但之前的收入已经落袋。这种‘收益远大于损失’的规则,必然导致作弊屡禁不止。2012年伦敦奥运会女子举重75公斤级,金银铜牌都因禁药被取消,最后第四名拿冠军——这就是规则漏洞导致的‘劣币驱逐良币’。”

“那如果所有人都作弊呢?”蒋尘突然问,“比如一个班里,大家都作弊,每个人都拿满分,这不是‘双赢’吗?”

教授反问:“真的是双赢吗?如果这个班的学生永远不走出校门,可能看起来没问题,但人总要进入社会。社会里的‘考试’,没有考官和分数,只有行为和后果——比如一个作弊拿到高分的医学生,到了医院不会做手术;一个作弊拿到证书的工程师,设计的桥梁会塌。人生是场‘无限游戏’,校园里的作弊,只是‘预演’,真正的代价在后面。”

“这就像中国古代的科举,为什么能运转上千年?”教授继续说,“科举也有作弊,但处罚极重——一旦发现科场舞弊,不仅考生被流放,考官也要掉脑袋。所以作弊是少数,不影响整体公平。今天的高考也是如此,作弊被发现,不仅取消成绩,还会记入诚信档案,影响未来升学就业——这种‘一次作弊影响终身’的规则,让大多数人不敢碰红线。一个系统能长期运转,核心是‘规则能防止自毁’:如果全员作弊,系统输出的都是‘不合格产品’,最终会被淘汰。”

“我们再延伸到‘无限游戏’——比‘多次游戏’更长久的,是‘希望游戏一直玩下去’。”教授举NbA的例子,“NbA为什么能成为最成功的体育联赛之一?因为它有两个关键规则:第一,选秀时战绩差的球队先选新秀,比如上赛季垫底的球队,能优先选潜力新人;第二,设置工资帽,防止有钱的球队签下所有巨星。这两个规则,就是为了避免‘马太效应’——强者越强,弱者越弱。如果某支球队永远赢,观众会看腻,联赛会没人关注;只有各队实力平衡,才有悬念,游戏才能一直玩下去。”

“这背后是哲学里的‘可持续发展思维’——无限游戏的目标不是‘赢一次’,而是‘让游戏持续’。”教授总结,“比如商业合作,不是‘赚一次快钱’,而是‘长期共赢’;比如人际关系,不是‘利用一次’,而是‘长久信任’。很多人理解错博弈,就是把‘人生这场无限游戏’,当成了‘几次独立的一次游戏’——比如为了眼前的利益,欺骗客户、背叛朋友,看似赢了一次,却输掉了未来所有可能的合作。”

“那什么是‘远见’?”秦易问。

“远见,就是在一次游戏里,想到多次的后果;在有限游戏里,看到无限的可能。”教授说,“比如有人找工作,只看‘第一个月工资多少’,不看‘未来有没有成长空间’——这就是用一次游戏的策略(短期收益)应对多次游戏(职业发展);有人做项目,只想着‘这次能赚多少钱’,不考虑‘会不会伤害品牌口碑’——这就是用有限游戏的规则(单次项目)套无限游戏(品牌长期发展)。”

课堂接近尾声,教授抛出思考题:“假设你们是学校的教务老师,要设计一套‘减少考试作弊’的方案,除了‘加大处罚力度’,还能从‘多次游戏’和‘无限游戏’的逻辑出发,增加哪些规则?比如如何让‘不作弊的长期收益’大于‘作弊的短期好处’?”

“大家可以课后分组讨论,下次上课分享方案。觉得今天的博弈论分析有启发的同学,别忘了点赞支持——很多生活里的选择,比如‘要不要熬夜赶工’‘要不要拖延作业’,其实都能用‘一次vs多次游戏’的逻辑判断。下次课,我们会聊‘博弈论在人际交往中的应用’——比如为什么‘真诚待人’是长期最优策略,不见不散!”

“一次游戏vs多次游戏”课堂总结:

该课堂由和蔼教授带领叶寒、秦易等五位同学,以博弈论为核心,结合心理学、哲学原理与现实案例,拆解“一次游戏”与“多次游戏(含无限游戏)”的不同玩法,最终指向“远见”的本质。

课堂开篇,教授先明确博弈论分类(零和游戏、非零和游戏),指出非零和游戏中“双输”易成纳什均衡,而生活中博弈多为“多次游戏”,策略需区别于“一次游戏”。随后以考试作弊为例计算收益:一次考试中,作弊被发现概率5%时,收益期望为4.5,看似“合算”;但多次考试下,随次数k增加,全部作弊成功概率骤降(k=30时仅21%),收益期望转为负数(k=30时约-16),且现实中作弊成功的“即时满足”会通过“操作性条件反射”强化行为,“只作弊一次”多为自欺欺人。

教授进一步用正反案例对比规则的影响:英美股市、美国打假靠“一次作弊清盘”(没收所得+倾家荡产)遏制违规;而体育赛场因“作弊收益>损失”(如阿姆斯特朗保留千万收入),禁药问题频发。同时提及科举、高考因“重罚舞弊”(科举考官连坐、高考记诚信档案),保障系统长期运转,避免“全员作弊致系统自毁”。

针对“无限游戏”,教授以NbA为例,其“弱队先选秀”“工资帽”规则,规避“马太效应”,保障赛事悬念,体现“无限游戏目标是让游戏持续”的哲学思维。最后总结:“远见”即不用一次游戏策略应对多次挑战,不用有限规则套无限未来;并抛出思考题——作为教务老师,除重罚外,如何从“多次\/无限游戏”逻辑设计减作弊方案。

暴风中文推荐阅读:满门殉国你悔婚,我娶嫂嫂你哭什么?穿成孩子他妈,盛总夜夜求壁咚绝对死亡规则惊!妖孽美人深陷男团修罗场剑雨仙侠闺蜜齐穿带崽跑路!世子急疯了综清穿:下岗咸鱼再就业盗墓:你们真的不是npc吗?别人修仙,我搞吃的魏梓芙女穿男:小正太娶妻又生子不死修仙人穿越,暴力夫妻互宠陨落神武霍格沃茨的女巫人在奥特:我为O50老大!鬼浅记自从有了神豪系统,姐天天上热搜修仙:从掌握变身开始老太重生:闪婚皇叔,前夫孽子悔成渣了李二傻的欢乐日长时空外卖:特工王妃的导演之路崩铁:不受命途影响的我,为所欲安答应:苟在清宫当咸鱼的日常司少的小祖宗又不安分了宝可梦:大地的暴君魔王是个雌小鬼?灵脉少年青色微醺生而为鬼,生吃个人我很抱歉与卿守,与君知恶魔霸总强宠,爱你就要狠狠虐圣域街溜子,从不干正事血魔横刀德善县主忙种田恶妇变好,冷厉糙汉怒撕和离书御兽神妃倾天下快穿小世界换新天神豪:惹不起巨星的姐姐是首富火影:开局变成创立斑,怎么办?萧凤是个好名字我在无限流游戏里嘎嘎乱杀!重生后,我被男主疯狂撩拨人在机变英盟,我是叱风云亲弟天啦!他变成了妹子冷情糙汉一开窍,娇软知青扛不住香尸诡婿暗夜,对她着迷缅甸丛林的现代帝国快穿:玄月的重生之旅
暴风中文搜藏榜:农门炮灰:全家听我谐音改剧情造化长生:我于人间叩仙门隐藏在霍格沃兹的占卜家欢迎来到成神之旅夫人她马甲又轰动全城了乔念叶妄川溯灵圣体:林洛的复仇之路爱上和尚新婚夜,病秧子老公求我亲亲他魔极道初遇心上人我老婆竟然从北源区来找我了书画学院的修仙日常读痞幼的书快穿之夏姬家有表姐太傲娇参加摆摊综艺后肥姐成了顶流凶案真相我在八零建门派小师祖在炮灰宗门大力投资被赶出家门后,真千金疯狂掉马甲被当替身,踹渣男后闪婚千亿大佬荒年悍妻:重生夫君想要我的命创世幻神录贺年有礼傅总的小娇妻又甜又软假死后,彪悍农女拐个猎户生崽崽快穿:一家人就要整整齐齐废妃无双这个实教不对劲国密局都来了,还说自己不会抓鬼开局被甩,转身带崽闪婚千亿总裁仙途传奇:修仙家族郡主扛着狙击杀来了汪瑶修真传四合院:许大茂的新生夺舍圣主的我穿越到了小马宝莉乡野村姑一步步算计太傅白月光仙子师尊的掌控欲实在是太强了暴徒宇智波,开局拜师纲手诸天从噬灵魔开始龙族再起气运之子别慌宿主她好孕又多胎仙妻太迷人,醋夫神君心好累我的二次元之旅,启程了赛尔:没有系统的我,点满了科技修真界亲传们没一个正常人春历元年女尊:昏庸女帝的阶下囚满分绿茶满分嗲精满分作凌虚之上
暴风中文最新小说:权伐我的桃花眼师姐蚀骨锥心穿肠梦幻几率玩家今天也在努力拯救悲惨路人丁从啃老苏明成开始,画风逐渐沙雕穿越后QQ农场成了我的金手指当代修行指南心电终结者:开局端粒只剩28天志怪世界,唯一真仙快穿之主神大人你别跑万界盘点,从那田蜘蛛山战役开始妻子上山后,与师兄结为道侣了综影视之女主女配都是我的太好了,是宠夫的神明我们有救了顶级魅魔连呼吸都是勾引男主破产,女主强势拿捏总裁变狗后,我成他专属监护人综盗墓人生轨迹拐了个弯快穿之我来自末世惊雪:中华异事录愿君无疾穿越?!但宇宙意识心动于你,灿若繁星穿书七零:闪婚瘸腿军官被宠上天网王不二周助拯救千疮百孔的世界我说的你信吗?青岚玉途:重生空间引仙路furry:从零开始到成为魔王穿书女配重生搞钱逆袭凡界小霸王五行废体火影:千眼蜈蚣,开局八百写轮眼重生70:空间与我同下乡超神,我超神召唤英灵快穿甄嬛传的爽翻人生万界共生黑店穿书进了海上繁花mygo:钢琴少女拯救乐队!镜界求生仙侠逆影滴血惊神阙仙界第一摸金校尉病娇男主惹人爱炮灰女配在首富大佬怀里肆意撒野学长!我持灵玉通阴阳血月刃鸣:无名之主的永夜契约观劫者:我在黑神话当狼妖重生之金玉妍回来了水性杨花儿诡异入侵我拯救世界