暴风中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

“放心吧!这种小事,我不会在意的。”

郭浩笑了笑,朝着眼前二人说到。

“好吧。”

马鑫有些担忧的点了点头。

“走了!”

说着郭浩离开了宿舍。

来到图书馆。

沈落雁果然已经坐在那里了。

“网上的事情……”

郭浩刚刚坐下,此时沈落雁已经抬起头,她的眼神之中充满了担忧,看着郭浩。

“你也刷微博啊?”

看着沈落雁的表情,郭浩微笑着问道。

“不是,是赵雨跟我说的,赵雨让我看了一些评论,你没事吧?”

沈落雁迟疑的看着郭浩问道。

“放心吧,我没事。”

郭浩笑了笑,看着眼前的沈落雁说到。

“不过是些小事,被网络上一些未知生物给攻击而已,这种事情以后还会有很多的。”

“好吧。”

沈落雁点了点头,她眼神之中带着担忧的神色,看着一旁的郭浩,明显她并没有就此放下心来。

只是,她一般不会反驳郭浩。

看着沈落雁的表情,郭浩面上微微有些无奈。

“放心吧!”

郭浩苦笑着朝着沈落雁说到。

“我前天不是出了一次学校吗?”

“嗯。”

沈落雁点了点头。

“我那次是去见大领导了!”

郭浩笑了笑,小声朝着沈落雁说到。

沈落雁眼神之中露出惊讶的神色,看着面前的郭浩。

“大领导???”

“对!”

郭浩笑着点了点头。

“现在你算是放心了吧?”

听到郭浩的话,沈落雁点了点头,既然有大领导撑腰的话,那郭浩肯定是没事了。

对于郭浩的话,沈落雁基本从不质疑。

“那网上的东西你就不要去看了,他们说的太难听了!”

说着话,沈落雁面上露出生气的神色。

嘴巴鼓起的生气模样,在郭浩看起来却十分的可爱。

他轻轻揉了揉沈落雁的头发,面上带着温暖的微笑。

“放心吧!我不会把网上那些人的话放在心上的,谁攻击谁,还不一定呢!”

“好!”

沈落雁点了点头。

她认真的看了郭浩几眼之后,继续开始看书。

郭浩没有急着看书。

现在的他已经过了那个需要努力看书的新手阶段了。

一年时间,郭浩不仅仅刷了系统要求的一百本书,论文也刷了很多篇了,还有很多配套和相关的书籍。

他的知识储备,已经达到了一个不低的水平了。

静静地看了一会儿沈落雁。

郭浩眼神之中闪过一丝恍惚。

自己对沈落雁,是有影响的吗?

郭浩不知道。

但是沈落雁这个妹子,真的非常努力。

重生是自己最幸运的事,而重生之后,能够和沈落雁在一起,则是自己第二幸运的事情了。

郭浩看了一会儿沈落雁之后,渐渐收敛了心思。

没有看网络,他继续开始计算华林猜想。

任何正整数都可表为不超过4个整数的平方和,如:6=2^2+1^2+1^2,14=3^2+2^2+1^2,等等;如果把不足4个的加上0^2,如13=3^2+2^2+0^2+0^2,则任一正整数可表为4个整数的平方和.

还有,任一正整数可表为9个自然数的立方和,19个自然数的四次方和,37个自然数的5次方和.这里自然数包括0.

这一猜想可表述为一般形式:对任一正整数N,存在数r(m),使N可表为r个自然数的m次方和,即 N=(x1)^m+...+(x[r])^m

1909年,希尔伯特证明了一般形式是正确的,解决了r(m)的存在性问题.但r(m)的最小值是多少呢?

这就是郭浩目前需要解决的问题。

除了华林猜想以外,一直到目前,由于g(k)的值严重依赖于正整数较小时的情况,人们提出了一个更强的问题,求对于每个充分大的正整数,可使它们分解为k次方数的个数G(k)。此问题进展较慢,至今G(3)仍无法确定。

这个问题与华林问题拥有极高的相关性,也是目前数学界前沿需要解答的问题。

郭浩低着头,皱着眉头看着眼前的稿纸。

缓缓写出了一行算式。

关于这个猜想,郭浩之前确实有一些灵感,但是真正开始推进这个猜想的时候,郭浩就感觉到了阻碍重重。

也是,关于华林问题,很多顶尖的数学家都有过研究。

包括陈景润老先生在内,很多顶尖的数学大佬,对这个问题多少都是有些涉猎。

但是他们很多都是取得了一些成果。

不过但r(m)的最小值是多少呢?

至今依旧没人知道。

这一个多月以来,郭浩在这个问题上,算是有了一些研究,但进展还是很缓慢,一直都没有触碰到核心的点。

陈景润老先生他们的论文,郭浩已经看了不止一遍了。

陈老用的是圆法来解决这个问题。

只可惜陈老只证明到了g(5)=37。

郭浩试着从陈老的角度开始往下延展,延伸,从圆法的角度来看,这个问题算到g(5)=37,已经是极限了,没办法继续往下算了。

是解题方法的问题么?

郭浩若有所思。

看着面前的问题描述,还有数学公式。

莫名的,郭浩想起了数论领域另外的一个更加着名的数学猜想。

哥德巴赫猜想。

这个问题的表述为任一大于5的整数都可写成三个质数之和。(n>5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和)

华林问题的表述,在某种程度上,倒是和哥德巴赫猜想,有种异途同归的妙处。

陈老先生改进了筛法,并且将之用在了哥德巴赫猜想上面,并证明了“1+2”,即他证明了任何一个充分大的偶数,都可以表示为两个数之和,其中一个是素数,另一个或为素数,或为两个素数的乘积,而这被称为“陈氏定理”。

因此,名震世界。

暴风中文推荐阅读:反腐风云之收官之战重生之权臣的掌中娇和亲公主之冷霸汗王的心尖宠大梦我仙诀食香离谱!谁家召唤师开局召唤龙王总裁大人,V587!我的老爹是重生花神不花小王公锦鲤少女逃荒种田二十五岁才激活神豪系统?开局被富婆包围,校花:那我走?让你扮演胡桃,你把全网当客户?七公子1腹黑老公,严肃点!女主请自重,我真的只想刷奖励啊火葬场奇谈小时候救的校花,长大后她倒追我蛇蝎毒妃:本宫不下嫁换嫁八零:新婚夜队长起来洗床单暴君爹爹的团宠小娇包灾难艺术家溺宠俏妻:傲娇总裁狠狠爱全民女神:重生腹黑千金穿成恶毒后娘后她带崽野翻了!渣男系统:在恋爱游戏里大放异彩替嫁神医:腹黑世子,甩不掉带一帮靓妞去修仙我官场崛起,退婚的女友开始倒追黄金庭院:从灵开始的现世生活不凡法师都市魔神:渡劫失败,夺舍重修娱乐圈最强替补工厂里的夫妻都市之神帝驾到重生了,此时不浪何时浪邻居是热芭?我有个大胆的想法!欺骗世界,我打造了现代超凡文明妻子背叛:摇身一变成太子至高使命分身强度拉满,我杀穿高武世界修真三千年,校花竟是我老婆嫡女虐渣手册国庆回家多了个姐姐大小姐失忆后,前任纷纷回头了阿姨,你也不想这事被孩子知道吧御兽:SSS级的我被兽娘抢疯了重生之我只想做个贪财好色的俗人重生后,商业帝国信手拈来重生1978:我的媳妇是女知青妖女满堂?明明是仙子忠诚!
暴风中文搜藏榜:我成了五个大佬的白月光舞动娱乐圈夺梦九帝斩天诀直上青云:从高考落榜开始蜜宠娇妻:BOSS夫人拽又甜每天一个战神技能华枝春满隋末扬旌都市修真:无敌杀伐开局操作蝙蝠侠重生60年代开始奋斗盛宠娇妻理论上可行东京大律师:开局律所破产苟不住的空间主豪门盛宠:司少,轻宠混世龙医这趟穿越有点险美女校花的全能保镖勒少的心尖萌妻婚后交锋之辣妻难驯重生87退婚后,前妻一家急疯了嫡女凶猛都市极品小仙医风水:姐,我不想努力了入狱成为天机神算,国家请我出山冥公子濒死病人,一首大不为震惊全网穿成男神电脑怎么破现代都市的鉴宝王者农门旺女:皇后,快来给朕抱抱!不敢在群里喊老婆,怕她们全回话重活之逍遥大明星重生空间之媳妇逆袭挂机修炼的我不敢躺平风雨兼程度十年从四合院开始的操蛋人生恶魔99次蜜吻:老公,宠太猛透视神医女婿天才萌宝,妈咪一个亿龙影战神:王者归来爱上女处长:一念翻身原神之古雨魔神我重生断绝关系,你们还没完了都市之绝世高手穿书后病娇暴君只在我怀里撒娇娇拍卖缅北噶腰团伙,警察关注我重生后我成了地产大亨群众官念
暴风中文最新小说:火红年代:知青小医生,青梅陪我下乡顶级甜妹:在限制级修罗场钓疯了我在古代养学霸重生93:从高考状元开始小孩哥别闹!国家都快压不住了四合院:从钳工开始,打脸众禽都市古仙医2:大医镇世重返1977:带着粮票去捡漏问鼎:重生后我权势滔天娇雀难哄渡我十年梦穿成退婚小作精:我种田养全家!摄政王的掌心娇重生饥荒年:带着妹妹虐渣暴富大小姐挺孕肚随军,被家属院团宠娇娇反派要嫁人,男主疯批争红眼你陪白月光,我离婚你后悔啥幻想战队万界大佬都是我徒弟我一病秧子,你说我是团宠?小人参三岁半,警局破案当团宠生长新歌重生09:我为财富之王资本家大小姐随军,搬空家产躺赢权势巅峰:从省纪委秘书开始夺回空间!大小姐搬空家产去随军女子监狱走出后,我医武双绝震惊世界!开局顶替流量巨星,全网火爆贬妻为妾?我二嫁权臣联手虐渣谁说华夏无神?外神亦是神!年代美人娇又媚,勾的糙汉心尖颤带着超市回古代从不空军的钓场!钓鱼圈彻底失控了假死三年,我竟成了冰山女神的协议老公潜艇厨子:透视深海,我即是天眼至尊少年王踏出SSS女子监狱,我医武双绝种田逃荒,秦香莲的养娃人生娘娘又娇又媚,一路宫斗上位恶毒公主摆烂后,五个大佬追疯了穿进侯府当后妈后每天都想和离战神归来:与我为敌,统统灭族!重生1985:从收猴票开始首富之路田园乱人心重回1991乔总别傲了,易小姐改嫁生三胎了都重生了谁还白手起家,我选择当富二代重生御兽,立志躺平却被女神契约重生换娘亲,炮灰成了名门贵女锦医春色