暴风中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

多层感知机的故事:魔法议会的决策过程

在一个神秘的王国里,国王想要选出一位新的王国守护者。这个过程可不是随便挑选一个人,而是需要经过一套复杂的决策系统。

首先,国王召集了一群初级顾问(第一层),他们的任务是根据简单的标准筛选候选人,比如力量、智慧、忠诚等。然后,这些初级顾问会把筛选后的结果交给高级顾问(第二层),高级顾问会进一步综合分析,比如勇气、战斗经验、道德标准。最终,这些信息被提交给大祭司(输出层),由她做出最终决定——谁能成为王国的守护者!

这个复杂的决策过程,就像**多层感知机(mLp, multi-Layer perceptron)**的工作方式——通过多层计算,逐步从简单特征提取更高层次的模式,最终得出精准的判断。

1. 什么是多层感知机?

多层感知机(mLp)是一种前馈神经网络,由多个感知机(神经元)组成,至少包含一个隐藏层,能够学习复杂的非线性关系。

mLp 的基本结构包括:

? 输入层(Input Layer):接收外界数据,比如图像、文本、传感器数据等。

? 隐藏层(hidden Layers):一层或多层,负责逐步提取更复杂的特征。

? 输出层(output Layer):根据处理的结果,输出最终的预测,比如分类结果、数值预测等。

数学上,mLp 的计算流程如下:

1. 计算加权和:

其中, 是权重矩阵, 是输入数据, 是偏置。

2. 通过激活函数引入非线性:

这里的 可能是 ReLU, Sigmoid, tanh 等激活函数,使得神经网络可以学习复杂的关系。

整个过程可以层层推进,直到输出层最终给出结果。

2. 为什么单层感知机不够?(国王的错误决策)

想象国王直接让一群初级顾问(单层感知机)做最终决策,那会发生什么?

他们只能依据简单的标准,比如:

? “谁的力量最强?”

? “谁的智慧最高?”

但如果候选人需要同时具备力量+智慧+忠诚+勇气,单层感知机就无能为力了。因为它只能学习线性关系,而无法组合多个因素进行复杂决策。

数学上,单层感知机只能表示线性可分问题,但现实世界的很多问题是非线性的。例如:

? 逻辑异或(xoR)问题:单层感知机无法解决,因为它不是线性可分的。

? 图像识别:不能仅靠像素的亮度判断物体,需要多层特征提取。

? 自然语言处理:单个词的出现不够,需要理解语境关系。

这就是为什么国王需要多层顾问(mLp)——多层神经网络可以逐步提取复杂特征,使得最终决策更加准确!

3. mLp 如何学习?(国王的顾问如何改进决策)

国王知道自己的顾问系统有缺陷,于是决定引入一套学习机制,让顾问们通过经验不断优化决策。

(1)前向传播(Forward propagation)

国王向顾问们提交候选人名单,每个顾问按照自己擅长的领域打分,然后层层传递,最终大祭司给出决策。

数学上,这就是:

1. 每一层计算:

2. 通过激活函数:

3. 最终输出预测结果 。

但如果这个决策结果和实际情况不符呢?国王如何优化顾问们的判断呢?这就需要反向传播。

(2)反向传播(backpropagation)

国王发现大祭司的决策和真实情况不符,比如他选了一位很强但不忠诚的战士。于是,他计算误差,并将这个信息反馈给顾问们,让他们调整评分标准。

数学上:

1. 计算损失(Loss),衡量预测值和真实值的误差:

2. 计算梯度,调整每一层的权重:

其中, 是学习率。

这就是梯度下降(Gradient descent),通过不断调整权重和偏置,使得最终预测更接近真实值。

最终,国王的顾问系统变得越来越精准,每一轮决策都会比上一轮更好。

4. mLp 的现实应用

多层感知机在很多领域都有应用,特别适用于需要学习非线性关系的问题:

(1)图像识别

? 输入层:像素数据(RGb 值)。

? 隐藏层:识别边缘、颜色、形状等特征。

? 输出层:判断这是一只猫还是一只狗。

(2)自然语言处理

? 输入层:单词或句子。

? 隐藏层:学习语法结构、词义关联。

? 输出层:生成文本、回答问题。

(3)金融预测

? 输入层:股票价格、经济指标。

? 隐藏层:分析趋势、市场情绪。

? 输出层:预测未来价格走势。

5. 结论

? 单层感知机(perceptron) 只能处理简单问题,无法学习复杂的非线性关系。

? 多层感知机(mLp) 通过多个隐藏层,使得神经网络可以学习更深层次的特征。

? 前向传播(Forward propagation) 计算预测值,反向传播(backpropagation) 通过梯度下降优化参数,使模型不断学习和提高准确性。

? mLp 是深度学习的基础,后来的卷积神经网络(cNN)、循环神经网络(RNN)等都是在它的基础上发展出来的。

最终,国王成功地通过“多层感知机”找到最合适的守护者,而现代 AI 也通过 mLp 实现了从图像识别到金融预测的突破!

暴风中文推荐阅读:反腐风云之收官之战重生之权臣的掌中娇和亲公主之冷霸汗王的心尖宠大梦我仙诀食香离谱!谁家召唤师开局召唤龙王总裁大人,V587!我的老爹是重生花神不花小王公锦鲤少女逃荒种田二十五岁才激活神豪系统?开局被富婆包围,校花:那我走?让你扮演胡桃,你把全网当客户?七公子1腹黑老公,严肃点!女主请自重,我真的只想刷奖励啊火葬场奇谈小时候救的校花,长大后她倒追我蛇蝎毒妃:本宫不下嫁换嫁八零:新婚夜队长起来洗床单暴君爹爹的团宠小娇包灾难艺术家溺宠俏妻:傲娇总裁狠狠爱全民女神:重生腹黑千金穿成恶毒后娘后她带崽野翻了!渣男系统:在恋爱游戏里大放异彩替嫁神医:腹黑世子,甩不掉带一帮靓妞去修仙我官场崛起,退婚的女友开始倒追黄金庭院:从灵开始的现世生活大戏骨不凡法师都市魔神:渡劫失败,夺舍重修娱乐圈最强替补工厂里的夫妻都市之神帝驾到重生了,此时不浪何时浪邻居是热芭?我有个大胆的想法!欺骗世界,我打造了现代超凡文明妻子背叛:摇身一变成太子至高使命分身强度拉满,我杀穿高武世界我在娱乐圈修仙修真三千年,校花竟是我老婆嫡女虐渣手册国庆回家多了个姐姐大小姐失忆后,前任纷纷回头了阿姨,你也不想这事被孩子知道吧御兽:SSS级的我被兽娘抢疯了重生之我只想做个贪财好色的俗人重生后,商业帝国信手拈来
暴风中文搜藏榜:我成了五个大佬的白月光舞动娱乐圈夺梦九帝斩天诀直上青云:从高考落榜开始蜜宠娇妻:BOSS夫人拽又甜每天一个战神技能华枝春满隋末扬旌都市修真:无敌杀伐开局操作蝙蝠侠重生60年代开始奋斗盛宠娇妻理论上可行东京大律师:开局律所破产苟不住的空间主豪门盛宠:司少,轻宠混世龙医这趟穿越有点险美女校花的全能保镖勒少的心尖萌妻婚后交锋之辣妻难驯重生87退婚后,前妻一家急疯了嫡女凶猛都市极品小仙医风水:姐,我不想努力了入狱成为天机神算,国家请我出山冥公子濒死病人,一首大不为震惊全网穿成男神电脑怎么破现代都市的鉴宝王者农门旺女:皇后,快来给朕抱抱!不敢在群里喊老婆,怕她们全回话重活之逍遥大明星重生空间之媳妇逆袭挂机修炼的我不敢躺平风雨兼程度十年从四合院开始的操蛋人生恶魔99次蜜吻:老公,宠太猛透视神医女婿天才萌宝,妈咪一个亿龙影战神:王者归来爱上女处长:一念翻身原神之古雨魔神我重生断绝关系,你们还没完了都市之绝世高手穿书后病娇暴君只在我怀里撒娇娇拍卖缅北噶腰团伙,警察关注我重生后我成了地产大亨群众官念
暴风中文最新小说:从不空军的钓场!钓鱼圈彻底失控了假死三年,我竟成了冰山女神的协议老公潜艇厨子:透视深海,我即是天眼至尊少年王踏出SSS女子监狱,我医武双绝穿进侯府当后妈后每天都想和离战神归来:与我为敌,统统灭族!重生1985:从收猴票开始首富之路田园乱人心重回1991都重生了谁还白手起家,我选择当富二代重生御兽,立志躺平却被女神契约重生换娘亲,炮灰成了名门贵女火红年代,这个小公安有情报系统快穿归来,网黑真千金杀穿娱乐圈乡下来的真千金,竟是玄学大佬替弟从军五载,归来全家夺我军功?全球高武:我背后一口棺,专业的捡尸随母改嫁旺新家,重生嫡女嘎嘎乱杀出道十年查无此人,圈内全是我前任?重回1960:渔猎白山松水我和富二代灵魂互换城市求生之牛小二的奇葩人生四合院:易中海的养老心思,被我扒个底婢女扶瑶我带小萝莉找上门,校花无痛当妈尚书千金投井后通灵?全京城慌了神医农女:我靠种田富甲天下七零随军:穿书作精她撩又甜重生后另择良婿,王爷红眼求名分踏出女子监狱后,三千囚徒誓死追随都市:女儿重生后,我成互联网教父了重生08:从拿下极品校花开始重生70,从给妻女煮碗白粥开始仕途风云:升迁消失三年回归,九个女总裁为我杀疯了大国军工:重生1985,为国铸剑香烬欢SSS警报!真龙踏出女子监狱!沪上名媛随军当晚,长官他破戒了大国房枭重生归来,我是战神也是首富女子监狱归来,我无敌于世知青下乡:从当赤脚医生治疗中风开始召唤之王:我手搓九星大魔神,你哭什么分开四年,容总他又带崽来求婚了捡漏我是认真的,空间里全是帝王绿复读一年,你攒了7个前女友?每日情报,从洗浴中心拯救校花开始!重生七八:从上山采药开始致富