暴风中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
暴风中文 >  离语 >   第301章 密码

基于聚类的离散化假设我们有一个包含1000个房屋的价格数据的数据集,我们想将价格分成5个簇,以下是离散化方法:首先,随机分配5个中心点。根据每个房屋的价格和这5个中心点的距离,将每个房屋分入距离最近的中心点对应的簇中。重新计算每个簇的中心点,以中心点的坐标作为新的中心点。重复步骤2和步骤3,直到中心点的移动小于某个阈值或达到最大迭代次数。最终得到的5个簇即为我们需要的离散化结果。自适应离散化假设我们有一个包含个商品销售量数据的数据集,我们想将销售量离散化成n个区间,以下是离散化方法:先将所有商品销售量根据大小排序。初始时,将数据集分成n个区间,每个区间保持相等的数据数量。计算每个区间的范围(最小值和最大值),并计算相邻区间的范围的中点,这些中点作为新的分割点。根据新的分割点重新划分区间,如果新的区间与原来的区间相同,则算法停止。否则,重复步骤3和步骤4。最终得到的n个区间即为我们需要的离散化结果。卷积核输出形状卷积神经网络中的卷积层的输出维度计算,可以通过以下公式得出:输出的高度 = (输入的高度 - 卷积核的高度 + 2 * padding) \/ 步长 + 1输出的宽度 = (输入的宽度 - 卷积核的宽度 + 2 * padding) \/ 步长 + 1输出的深度 = 卷积核的数量这里,padding是指在输入数据周围填充的0的行数或列数(在计算输出大小时有助于保持空间尺寸不变),步长是指卷积核移动的步数。输出的深度直接取决于我们使用的卷积核的数量。输入数据大小为32 x 32大小单通道图片,在c1卷积层使用6个大小为5 x 5的卷识核进行卷积,padding = 0,步长为1通过6个大小为5 x 5的卷识核之后的输出是多大尺寸的,怎么用公式计算给定:输入的高度 h = 32;输入的宽度 w = 32;卷积核的高度 Kh = 5;卷积核的宽度 Kw = 5;卷积核的数量 K = 6;步长 S = 1;padding p = 0根据上述公式,我们可以计算出卷积后的输出尺寸:输出的高度 = (h - Kh + 2p) \/ S + 1 = (32 - 5 + 2*0) \/ 1 + 1 = 28输出的宽度 = (w - Kw + 2p) \/ S + 1 = (32 - 5 + 2*0) \/ 1 + 1 = 28输出的深度 = K = 6所以,通过6个大小为5x5的卷积核后的输出尺寸为 28x28x6。

留出法(holdout method):基本思想:将原始数据集划分为训练集和测试集两部分,其中训练集用于模型训练,而测试集则用于评估模型的性能。实施步骤:根据比例或固定的样本数量,随机选择一部分数据作为训练集,剩余部分用作测试集。优点:简单快速;适用于大规模数据集。缺点:可能由于训练集和测试集的不同导致结果的方差较高;对于小样本数据集,留出的测试集可能不够代表性。2交叉验证法(cross-Validation):基本思想:将原始数据集划分为K个大小相等的子集(折),其中K-1个子集用于训练模型,剩下的1个子集用于测试模型,这个过程轮流进行K次,最后将K次实验的结果综合得到最终的评估结果。实施步骤:将数据集随机划分为K个子集,依次选择每个子集作为验证集,其余子集作为训练集,训练模型并评估性能。重复这个过程K次,取K次实验的平均值作为模型的性能指标。优点:更充分利用了数据;可以减小因样本划分不同而引起的方差。缺点:增加了计算开销;在某些情况下,对于特定划分方式可能导致估计偏差。3自助采样法(bootstrapping):基本思想:使用自助法从原始数据集中有放回地进行有偏复制采样,得到一个与原始数据集大小相等的采样集,再利用采样集进行模型训练和测试。实施步骤:从原始数据集中有放回地抽取样本,形成一个新的采样集,然后使用采样集进行模型训练和测试。优点:适用于小样本数据集,可以提供更多信息;避免了留出法和交叉验证法中由于划分过程引入的变化。缺点:采样集中约有36.8%的样本未被采到,这些未被采到样本也会对模型性能的评估产生影响;引入了自助抽样的随机性。拓展:选择何种数据集划分方法应根据以下因素进行综合考虑:1数据集大小:当数据集较大时,留出法能够提供足够的训练样本和测试样本,而且计算开销相对较小。当数据集较小时,交叉验证法和自助采样法能更好地利用数据。

2计算资源和时间限制:交叉验证需要多次训练模型并评估性能,所以会增加计算开销;自助采样法则需要从原始数据集中进行有放回的采样,可能导致计算成本上升。如果计算资源和时间有限,留出法可能是更可行的选择。3数据集特点:如果数据集具有一定的时序性,建议使用留出法或时间窗口交叉验证,确保训练集和测试集在时间上是连续的。如果数据集中存在明显的类别不平衡问题,可以考虑使用分层抽样的交叉验证来保持类别比例的一致性。4评估结果稳定性要求:交叉验证可以提供多个实验的平均结果,从而减少由于随机划分带来的方差。如果对评估结果的稳定性要求较高,交叉验证是一个不错的选择。总而言之,没有一种数据集划分方法适用于所有情况。选择合适的方法应根据具体问题的需求、数据集的大小以及可用的资源和时间来进行综合考虑,并在实践中进行实验比较以找到最佳的划分方式。2、请列举模型效果评估中准确性、稳定性和可解释性的指标。1准确性:准确率(Accuracy):预测正确的样本数量与总样本数量的比例。精确率(precision):预测为正类的样本中,真实为正类的比例。召回率(Recall):真实为正类的样本中,被模型预测为正类的比例。F1值(F1-Score):综合考虑了精确率和召回率的调和平均,适用于评价二分类模型的性能。2稳定性:方差(Variance):指模型在不同数据集上性能的波动程度,方差越大说明模型的稳定性越低。交叉验证(cross Validation):通过将数据集划分为多个子集,在每个子集上训练和评估模型,然后对结果进行平均,可以提供模型性能的稳定估计。3可解释性:特征重要性(Feature Importance):用于衡量特征对模型预测结果的贡献程度,常用的方法包括基于树模型的特征重要性(如Gini Importance和permutation Importance)以及线性模型的系数。4可视化(Visualization):通过可视化模型的结构、权重或决策边界等,帮助解释模型的预测过程和影响因素。5 ShAp值(Shapley Additive explanations):一种用于解释特征对预测结果的贡献度的方法,提供了每个特征对最终预测结果的影响大小。这些指标能够在评估模型效果时提供关于准确性、稳定性和可解释性的信息,但具体选择哪些指标要根据具体任务和需求进行综合考虑。

暴风中文推荐阅读:破局:黑暗中的正义曙光末日冰河:神界降临后我成了农民我出生那天,鬼母下跪,蛊王投胎千机:废物王爷与女将军前世来生蝴蝶梦关于我们穿越到崩铁后的那些事夫郎家的科举高三牲顾佳燃,你是我独一无二的冠军人在海贼:我成为了世界女王破案:我能锁定凶手,推理就变强猎人记盗墓:小哥她姐姐老有钱啦在海贼建团:船员是万界反派撩她入瘾原神:仙人洞府满门殉国你悔婚,我娶嫂嫂你哭什么?抓鬼啦穿成孩子他妈,盛总夜夜求壁咚九阳生死变旅行精灵:我的宝可梦在异界变强97:怕我破产要退婚?钢价暴涨她傻眼了海贼:获得联盟英雄之力成为海军清穿:在康熙后宫做妾室绝对死亡规则暮色沉溺极限惹吻惊!妖孽美人深陷男团修罗场剑雨仙侠如果没有穿越这件事娇娇王妃驾到,疯批王爷宠入骨闺蜜齐穿带崽跑路!世子急疯了综清穿:下岗咸鱼再就业快穿带娃:开局精神控制躺赢末世风水师之阴阳神婿盗墓:你们真的不是npc吗?天地日月神域她们的幸福时代上穷碧落下黄泉只与你相守别人修仙,我搞吃的魏梓芙女穿男:小正太娶妻又生子不死修仙人校园怪谈之惊魂异事集精灵,开局在森林长大穿越,暴力夫妻互宠盗墓:兄弟来自古代,怎么办陨落神武霍格沃茨的女巫人在奥特:我为O50老大!鬼浅记
暴风中文搜藏榜:农门炮灰:全家听我谐音改剧情造化长生:我于人间叩仙门隐藏在霍格沃兹的占卜家欢迎来到成神之旅夫人她马甲又轰动全城了乔念叶妄川溯灵圣体:林洛的复仇之路爱上和尚新婚夜,病秧子老公求我亲亲他魔极道初遇心上人我老婆竟然从北源区来找我了书画学院的修仙日常读痞幼的书快穿之夏姬家有表姐太傲娇参加摆摊综艺后肥姐成了顶流凶案真相我在八零建门派小师祖在炮灰宗门大力投资被赶出家门后,真千金疯狂掉马甲被当替身,踹渣男后闪婚千亿大佬荒年悍妻:重生夫君想要我的命创世幻神录贺年有礼傅总的小娇妻又甜又软假死后,彪悍农女拐个猎户生崽崽快穿:一家人就要整整齐齐废妃无双这个实教不对劲国密局都来了,还说自己不会抓鬼开局被甩,转身带崽闪婚千亿总裁仙途传奇:修仙家族郡主扛着狙击杀来了汪瑶修真传四合院:许大茂的新生夺舍圣主的我穿越到了小马宝莉乡野村姑一步步算计太傅白月光仙子师尊的掌控欲实在是太强了暴徒宇智波,开局拜师纲手诸天从噬灵魔开始龙族再起气运之子别慌宿主她好孕又多胎仙妻太迷人,醋夫神君心好累我的二次元之旅,启程了赛尔:没有系统的我,点满了科技修真界亲传们没一个正常人春历元年女尊:昏庸女帝的阶下囚满分绿茶满分嗲精满分作凌虚之上
暴风中文最新小说:玄门血裔:嫡女谋断乾坤假成亲,真圆房,夫君腹黑又难缠诸天原始神话四合院何大清截胡秦淮茹多子多福30岁前一夜姐实现了30个梦想替嫁王妃,病娇王爷心尖宠名义:省服第二出手了!被泼奶茶那夜我绑定神豪系统基建暴君:从亡国太子到万象至尊心声暴露,兽夫们夜夜熬红眼战锤:从色孽巢穴开始的无敌路穿成农家后娘,我靠养崽暴富了落魄练习生逆袭超级偶像竹马要造反,我该怎么办?四合院:一觉醒来,穿越了群书漂卍解临江剑侠风云传老公是万古神王斩神:天祖母让我努力入编从外门杂役开始修仙预知厄运,我带警局躺赢了气死!夫人的新欢个个比他强名柯:劳模家的柯学研究员诸神棋盘:我以杀劫证菩提半生恩怨,半世情现代搏击手闯荡武林为妻三年被休,我自立门户你哭啥噬界之瞳:两界动荡的隐秘推手火影:人在忍校,教书就能变强末日童话乐园【快穿】三岁半满级老祖宗,错绑系统封神穿书七零,她成了科研大佬心尖宠全球贬值!我靠百亿资产盘活全家人在尸兄,但我是银龙?云纹竟含无上仙道综漫:星空之下的救赎修仙界坑人日常重生之修仙记恐怖游戏笔记千面代码佛魔道皆是我济癫恶毒雌性觉醒,驯服六个黑化兽夫高岭之花?都成了她的裙下臣小马宝莉:为了紫悦殿下!室友姐姐有点狗绝世魔女的灭世轮回危险前行诡潮梦墟娇软美人穿兽世,八个兽夫争着宠绑定系统后,我成了万界百晓生