暴风中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

要偏向于更为全面的文献数据。生命周期评价的本质是用来评估产品或服务从生产到消费再到废弃的整个过程对环境和社会的影响,它考虑了资源使用、能源消耗、排放物的产生等方面。那么为了提高最后基于电力LcA这个领域搭建的专业模型的准确度,对文献进行精细筛选,选取同时包括流程图,数据,各单元过程投入产出详细数据,数据时间地点落去方法,技术细节的文献,作为最终的数据。将精细筛选后的论文数据,结合unstructed库进行数据处理。进行信息精细化拆解与清洗,使以pdf形式存储的文献数据通过分割,分区,变成便于嵌入模型的结构化数据。对文字进行筛选与清理,图像的内容进行识别,存储图像的解释信息,表格转化为htmL格式。最后统一变成标题加内容的格式。在这里我列举了简单的数据处理流程。首先是对数据进行分割。随后是对文本进行拆分,识别内容是否为文本,如果是,就填进text_list。将表格转化为htmL格式,将图片变为图片解释信息。第二部分是知识库的构建。向量知识库,能将各类数据(如文本、图像、音频等)转化为向量形式进行存储。数据之间的相似性和关联性得以量化,不像平时你存储你的,我存储我的,向量数据库给予了一个统一的标准。也正是因为统一了格式,利用相似度对比,检索更加高效。构建知识库的流程首先是提取分割文本进行向量化的操作。向量化的本质是将离散的符号信息,如词或句子,映射到连续的向量空间中,以便计算机能够处理。向量化将高维数据转化为低维数据,保留了数据的关键特征又降低了数据的复杂度。选择pipecone存储向量数据,它支持查询,插入,删除等一些列操作。选择weaviate作为向量搜索引擎,可以通过主题的分类检索,进行语义搜索、问答提取等等功能。第三部分是chatbot的构建。先前已经构建好了针对电力LcA领域的专业大模型,但是缺少检验模型的手段,即缺少模型优化环节,本项目设置通过chatbot模式,通过与用户进行问答的形式,检验模型是否能调用电力行业LcA领域向量数据库回答该领域专业性问题和时效性问题的有效性。chatbot是模拟人类对话的一种形式,就我们平时能使到的chatgpt就是以chatbot的形式来呈现的,而chatbot在这里的功能实现主要是为了体现检索功能,大致可分为知识库检索功能和在线搜索。那么就产生了三种检索模式。

仅基于大语言模型,连接知识库搜索,和在线搜索。前端部分我采用streamlit来完成,UI设计如图所示。这边是功能按钮,中间是对话框。先前有讲到了,我们来检测针对专业领域的大模型的标准就是检测是否有能力回答专业领域的问题,并针对结果进行优化。这里我向chatbot提出同一个问题。只采用大语言模型,采用知识库与大语言模型结合,和联网搜索与大语言模型结合。三种功能下获得的回答是完全不同的,后面两个检索功能均为大语言模型优化了生成回答的准确性,对大语言模型的专业领域知识做了补充和改善。可以看到普通的大语言模型回答的是最简短的,采用了知识库的回答,将答案细分,扩充,并添加了新的内容,附上参考文献。最后的联网搜索,将答案分为了几类,更加全面,但是每类回答点到即止。最后就是向量知识库进行优化。对于准确率低的查询,分析模型回应错误的原因。如果是由于知识库中缺少相关信息,可以通过添加更多相关文档和数据来增强向量知识库的覆盖范围。用户反馈是对输入的问题和产生的回答进行记录,方便针对性进行调整。反馈可以直接用于指导向量知识库的更新和优化。不断地测试来完善我的专业领域大模型。最后一部分是我本次研究的总结。首先创建了一个能被大语言模型直接调用的专业知识库,在电力LcA这个专业性较高的领域填补了大语言模型的空白。其次是采用RAG技术,将知识库,联网与大语言模型相结合,增强了大语言模型在特定领域的可信度和实用性。最后就是本次研究虽然是针对电力LcA领域,但其背后的构架适用于各个领域,构建了一个完整的体系,可以进行修改,全方面的辅助大语言模型,应用广泛。以下就是我的全部研究内容请各位老师批评指正。

3.3.2 数据预处理

Unstructured 库是一个强大的工具,专为处理非结构化数据设计,具体流程如图 3.7 所示,

如从文本文档、pdF 文件或网页中提取数据。它支持多种数据提取方法,包括正则表达式匹配、自

然语言处理(NLp)技术等。

数据预处理步骤如下:

步骤一:数据清洗

去除杂质:从文本中去除无关的字符,如特殊符号、空白行等。

格式统一:将所有文本统一为相同的编码格式,通常为 UtF-8,以避免编码错误。

语言标准化:统一不同术语的使用,例如将所有\"photovoltaic\"统一替换为\"pV\",确保术语的

一致性。

步骤二:信息提取

关键信息标识:标识文献中的关键信息,如研究方法、主要结论、实验条件等。

数据分类:根据信息类型将数据分类,如作者、出版年份、研究结果等。

步骤三:结构化转换

结构化处理:将信息精细化拆解与清洗,将各种元素进行转换,形成结构化数据形式,拆分成

标题与内容。

分割部分关键代码:

对于其中的每个元素,如果是 positeElement 类型,就提取其中的文本并将其添加到

text_list 中;如果是 table 类型,就将表格的文本表示(可能是 htmL 格式)添加到

text_list 中。

将图 3.8 的提取的数据进行拆分,添加到 text_list 中,输出结果如图 3.11 所示。

非结构化文本数据通常非常稀疏,即包含大量的词汇但每个文档只使用其中的一小部分。而结

构化数据则可以通过合并相似信息来降低数据的稀疏性,这有助于生成更加紧凑和有效的嵌入向

量。

结构化数据可以实现更高效的特征提取。结构化数据通常已经按照特定的模式或结构进行了组

织,这使得我们可以更加高效地从中提取有用的特征(如标题、作者、摘要、关键词等)。这些特

征可以作为后续 Embedding 的输入,帮助生成具有更强区分性和泛化能力的嵌入向量。结构化数据

中的元素(如主题、类别、属性等)通常具有明确的含义,这些含义可以在 Embedding 过程中被保

留下来。因此,基于结构化数据的嵌入向量往往具有更强的解释性,有助于我们更好地理解模型的

预测结果和内部机制。

暴风中文推荐阅读:满门殉国你悔婚,我娶嫂嫂你哭什么?穿成孩子他妈,盛总夜夜求壁咚绝对死亡规则惊!妖孽美人深陷男团修罗场剑雨仙侠如果没有穿越这件事闺蜜齐穿带崽跑路!世子急疯了综清穿:下岗咸鱼再就业风水师之阴阳神婿盗墓:你们真的不是npc吗?她们的幸福时代上穷碧落下黄泉只与你相守别人修仙,我搞吃的魏梓芙女穿男:小正太娶妻又生子不死修仙人穿越,暴力夫妻互宠陨落神武霍格沃茨的女巫人在奥特:我为O50老大!鬼浅记自从有了神豪系统,姐天天上热搜修仙:从掌握变身开始老太重生:闪婚皇叔,前夫孽子悔成渣了李二傻的欢乐日长时空外卖:特工王妃的导演之路崩铁:不受命途影响的我,为所欲安答应:苟在清宫当咸鱼的日常司少的小祖宗又不安分了宝可梦:大地的暴君魔王是个雌小鬼?灵脉少年青色微醺生而为鬼,生吃个人我很抱歉与卿守,与君知恶魔霸总强宠,爱你就要狠狠虐圣域街溜子,从不干正事血魔横刀德善县主忙种田恶妇变好,冷厉糙汉怒撕和离书御兽神妃倾天下快穿小世界换新天阵云高虫阵道韵神豪:惹不起巨星的姐姐是首富火影:开局变成创立斑,怎么办?我们死里求生,你来这里人情世故萧凤是个好名字我在无限流游戏里嘎嘎乱杀!她和陆医生隐婚了重生后,我被男主疯狂撩拨
暴风中文搜藏榜:农门炮灰:全家听我谐音改剧情造化长生:我于人间叩仙门隐藏在霍格沃兹的占卜家欢迎来到成神之旅夫人她马甲又轰动全城了乔念叶妄川溯灵圣体:林洛的复仇之路爱上和尚新婚夜,病秧子老公求我亲亲他魔极道初遇心上人我老婆竟然从北源区来找我了书画学院的修仙日常读痞幼的书快穿之夏姬家有表姐太傲娇参加摆摊综艺后肥姐成了顶流凶案真相我在八零建门派小师祖在炮灰宗门大力投资被赶出家门后,真千金疯狂掉马甲被当替身,踹渣男后闪婚千亿大佬荒年悍妻:重生夫君想要我的命创世幻神录贺年有礼傅总的小娇妻又甜又软假死后,彪悍农女拐个猎户生崽崽快穿:一家人就要整整齐齐废妃无双这个实教不对劲国密局都来了,还说自己不会抓鬼开局被甩,转身带崽闪婚千亿总裁仙途传奇:修仙家族郡主扛着狙击杀来了汪瑶修真传四合院:许大茂的新生夺舍圣主的我穿越到了小马宝莉乡野村姑一步步算计太傅白月光仙子师尊的掌控欲实在是太强了暴徒宇智波,开局拜师纲手诸天从噬灵魔开始龙族再起气运之子别慌宿主她好孕又多胎仙妻太迷人,醋夫神君心好累我的二次元之旅,启程了赛尔:没有系统的我,点满了科技修真界亲传们没一个正常人春历元年女尊:昏庸女帝的阶下囚满分绿茶满分嗲精满分作凌虚之上
暴风中文最新小说:娇软资本家小姐随军,撩得硬汉宠上瘾我靠捡钱发家致富春山愿难产不爱后,禁欲机长他急了!职场小白的契约逆袭别求了,这顾太太我不当了梦中吟将军夫人有弹幕,携夫君福宝杀疯全府乖,别叫太子爷,叫老公贪上霸道女总裁陆总眼红失控,说好的高不可攀呢和高冷学神吵架后,他在网上哭唧唧其实没有那么糟糕穿进女尊文里当咸鱼前所末有之事全家穿到流放前夕,手握空间赢麻了掏空家底,资本家少奶奶下乡了综影视:一见钟情再见倾心偏要吻轮回昙龙和亲公主夺江山,阴鸷王爷求垂怜穿成侯爷的恶毒原配,被全家宠疯啦你和我的距离隔着星星超凶!玄门小祖宗飒爆全京圈穿成绝孕雌性,却被争着宠道走阴阳无声野火一生走到老直播读心毛茸茸,狂赚百亿赢麻了李小婧的故事继室娇媚入骨:疯批将军搂腰哄娇养绝嗣反派后,八零女配超好命督军爹爹开门,福气包来噜!无敌小仙妻向阳而许穿书八零,配角能有什么坏心思呢作精大小姐,拿捏糙汉军少全家八零大院:凝脂美人她持美行凶亮剑:开局手搓飞雷炮,老李乐疯了!穿书八零:小配角攻略年代大佬锦画昭昭嫡女重回赐婚前,暴戾王爷缠上身天才游戏2探心就当我们相爱过灵姬仙途逍遥游七零退婚后,大小姐为国效力赢麻了绝境回响:救赎边缘仙落凡尘与卿宁隐婚!清冷总裁下神坛,求公开