暴风中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

应该说,微分和积分为什么互为逆运算,而且为什么通过反求导就能求出区域面积,这大概是在学习微积分的时候,很多人最难理解的一个点。

甚至曾经在很早之前,大家都把微分和积分看作是两个互不关联,毫不相关的东西去看待,直到后面出现了牛顿和莱布尼茨。

考虑到证明的过程是很难直观去理解的,所以李纵才举了这么一个或许并不太严谨,但却意外好懂的例子,把求积分的图,当成是瞬间速度变化的图。

然后求从a到b时间之内,到底走过了多少路程,这是不是就是反求导之后,用大写的F代表原函数,黄色区域的面积就等于F(b)-F(a)。

这正是计算积分十分重要的一个公式,将连续的需要求和的一条条铅垂线的过程,转变成了只需要代入边界的值,一减就能求出面积。

见两人还在犹豫,李纵也是把路程等于速度乘以时间,面积等于底边乘以高,两者都是乘法的这么一个过程写了出来,道:“其实我们不必纠结于为什么路程可以看成是面积。”

“我们只需要知道他们都同样是乘法运算,而且,都是函数关于一滴滴的单位之内,会得到某个值就行了。”

“而且,如果反过来理解,求积分的这个图,用微分去表述,就可以是,在一滴滴的时间之内,面积的变化率。”

见两人还在沉思,李纵便继续道:“那么,假设这种想法是对的,我们已经得知,这两种运算存在着一种互逆的关系,那么,我们可以怎么使用这种关系?”

“是不是就可以求积分了,积分原本是要把很多很多的铅垂线的面积加起来,正常来说,我们人是办不到的,但是如果能把它转换为微分时的原函数,积分是不是就可以计算了。”

“直接代入两个边界的点,一减,答案不就出来了。b点的里程,比如说15里,减去a点的里程,比如说10里,一减,中间的5里,就是我们走过的路程。”

“那么问题来了!这个积分的函数,跟它微分时的原函数,到底存在着一种什么样的关系。”

“或者说,我现在已经知道了积分的函数了,就是等于y=2x,那么,微分时的原函数,是什么?所以是不是就是一次从微分的结果,反推微分的开头的这么一个过程。”

“那接下来我们便尝试着拿一个例子,来求一次微分。”

“比如说原函数y=x2,根据刚刚微分的定义,是不是就可以有以下这个式子:”

图。

“此式子怎么理解,刚刚我们是用t-a的方式,但这样显然是算不出来的,所以我们把t换成x+Δx,代表t比a多了那么一滴滴增量,但是这个增量又是无限小,我们定义无限小不等于0,但是它无限趋近于0。”

“接下来便可以对式子进行运算。”

图。

“正如同前面我们说让t就是等于a,那么很短很短的时间,也就没有争议。这个的Δx,我们把他视为是没有增量,那么这条式子最后,微分出来,等于2x也就没有争议了。”

“当然,前提是,我们定义了无限小,是趋向于0。”

“这正好就是微分的结果跟原函数。”

“接下来,我们可以代入一些数字来测试一下。”

“首先明确,y=x2是路程关于时间的函数,y=2x是路程变化率,也就是速度关于时间的函数。”

“现在我要求y=2x在某一段时间内走过的路程,即这个函数在给定边界范围的面积。”

“就可以变成求出原函数,然后代入边界,最后y=12=1。”

“而反应在y=2x的这个与x、y边界所围成的面积,是不是也是,按照三角形的面积公式,底是1,高是2,1×2÷2=1,也等于1。”

“再代入别的数字,x=2,原函数答案是4,y=2x围成的面积是,2×4÷2=4,也等于4。”

“下面的以此类推,答案完全一样。”

“甚至就是算梯形的面积,其实也是一样的。”

李纵用一个很巧合的例子,来说明在给定边界后,的确可以通过原函数的式子来算出图形的面积。并且计算出来的面积是完全吻合的,这恰恰印证了前面李纵的假设。

虽说这只是个例,但是,此法足以让两人耳目一新。

三角形的面积原来还能这么算,这谁能想到!

然后李纵便道:“其实还有更为严格的证明过程,只是便于你们好理解,我也就拿这个作为例子。”

“假设这就是对的!”

“那么,以前我们是不是写了一条关于圆的方程的式子,是不是也有xy,而且当时我们还算出了边界,如果我没有记错的话,是b点的坐标是四分之一。”

“要是我们也能知道那条圆的方程的式子的原函数,是不是就能够通过直接代入四分之一,当然,起点是0,所以不用算,去算那个小区域S(ABD)的面积。”

两人听完,简直觉得李纵就是鬼才!

这都能让李纵想到!

但是……

接下来,等李纵把圆的方程式子写下来后,这个要怎么求原函数,却是把所有人都难倒了。

“这个式子,要怎么求原函数。”

“方才,我们是瞎猫碰上死耗子,正好通过微分,算出来是2x,那么接下来什么原函数的微分等于(x-x2),再开根号。”

张公绰两人立刻都傻眼了。

甚至,看完了这条式子,前面什么微分、积分好像都忘了,这就是所谓的,你看完,你觉得你自己懂了,其实,你什么都不懂。(图)

“这的确是一条相当复杂的式子,而且微分的过程虽说我们从头到尾都是知道的,但是我们却又不可能从后面往前推。”

“尤其还是这种又有减法,甚至还有开平方的式子。”

“这怎么办?”

“我们化简一下。”

“这就是结果。”

“然后我们先不管前面的x的二分之一方,我们就看后面的这个,(1-x)的二分之一方,是不是就跟我们之前提到的,那个f(m)的公式长得很像。”

“那我们是不是就可以把这个式子,按照f(m)的式子来展开。”

“最后得到。”

“我们再对这个式子求原函数。”

暴风中文推荐阅读:神魔宿命女总裁之贴身傲世霸主叛出队伍加入张起灵,你们在哭啥这不是娱乐深夜绝伦重生2014:一个人的豪门四合院:禽兽之王反腐风云之收官之战重生之权臣的掌中娇和亲公主之冷霸汗王的心尖宠灵道纪娱乐:我和女明星神魂有联系离婚后,我竟然长生了大梦我仙诀食香离谱!谁家召唤师开局召唤龙王总裁大人,V587!急!刚重生,被绝美小富婆包围了开局反杀命运,系统教我花式败家遮天:从吞天魔罐开始我的老爹是重生花神不花小王公锦鲤少女逃荒种田蓝湖秘传:时空寻迹二十五岁才激活神豪系统?穿越空间福满园开局被富婆包围,校花:那我走?让你扮演胡桃,你把全网当客户?七公子1腹黑老公,严肃点!字神骆风棠杨若晴护国战神高武武武武武武武武武武武武武武穿回现代直播他们羡慕哭了女主请自重,我真的只想刷奖励啊抱着大嫂,我教大哥黑吃黑火葬场奇谈小时候救的校花,长大后她倒追我蛇蝎毒妃:本宫不下嫁重生后拒接盘,开局疯狂搞钱换嫁八零:新婚夜队长起来洗床单暴君爹爹的团宠小娇包灾难艺术家溺宠俏妻:傲娇总裁狠狠爱全民女神:重生腹黑千金娱乐:开局杀猪,从旅综爆火全球还没对象?小心寄御兽:你可曾听闻过这梦想的一刀穿成恶毒后娘后她带崽野翻了!渣男系统:在恋爱游戏里大放异彩
暴风中文搜藏榜:我成了五个大佬的白月光舞动娱乐圈夺梦九帝斩天诀直上青云:从高考落榜开始蜜宠娇妻:BOSS夫人拽又甜每天一个战神技能华枝春满隋末扬旌都市修真:无敌杀伐开局操作蝙蝠侠重生60年代开始奋斗盛宠娇妻理论上可行东京大律师:开局律所破产苟不住的空间主豪门盛宠:司少,轻宠混世龙医这趟穿越有点险美女校花的全能保镖勒少的心尖萌妻婚后交锋之辣妻难驯重生87退婚后,前妻一家急疯了嫡女凶猛都市极品小仙医风水:姐,我不想努力了入狱成为天机神算,国家请我出山冥公子濒死病人,一首大不为震惊全网穿成男神电脑怎么破现代都市的鉴宝王者农门旺女:皇后,快来给朕抱抱!不敢在群里喊老婆,怕她们全回话重活之逍遥大明星重生空间之媳妇逆袭挂机修炼的我不敢躺平风雨兼程度十年从四合院开始的操蛋人生恶魔99次蜜吻:老公,宠太猛透视神医女婿天才萌宝,妈咪一个亿龙影战神:王者归来爱上女处长:一念翻身原神之古雨魔神我重生断绝关系,你们还没完了都市之绝世高手穿书后病娇暴君只在我怀里撒娇娇拍卖缅北噶腰团伙,警察关注我重生后我成了地产大亨群众官念
暴风中文最新小说:君王殿财戒渣混的世界阴魂荡医河长路放下个人素质,享无敌人生盗贼只能开锁?可我什么技能都有九叔,不能悟道我,契约万物成道友人犯贱系统毕业后,我和契约姐姐假戏真做什么?前世女友带记忆来找我报仇系统:我真不想当渣男啊全网唾弃后,我蹭天后前女友热度诡异复苏:从吸收怨气开始修行!1977:换亲后,娇软女知青赖上我没钱当什么锻造师?狱皇归来,我以无敌镇世间六年出山,三岁萌宝被骂野种摊牌了,我有系统不装了诡外卖我赶尸匠,一个关注惊爆全网重回70:囤满物资,替妹下乡!村凰炫爀门荣耀王座之都市传说替嫡姐怀上世子爷的孩子后,她死遁了系统之敌文娱:分手是你,我成天王你哭啥?重生八零:赶海觉醒情报系统,鱼获爆棚!黄金年代:我在1994重启人生游轮上奇遇豪门千金重生1990,从回国造彩电开始全民:开局吞噬天赋,我为暗影主宰!重生1977:我的野性人生离婚后,冰山前妻找我重金求子反派,开局拿下主角妹妹刚成辅助,皇上强行许配公主给我我是真不想当风水师重生78,我养活了亡妻的四个妹妹精分男主和他的变态客户们在恋综当老六?一句泡面仙人全网暴火三线情怀奈何女老板硬要嫁我丰碑都市医圣:我的透视传承能救世绝代天医你们管这叫邪修?别人练跑我练气,称霸体坛很容易三国之某多多强势入侵邪皇狂枭:开局觉醒神级天赋