暴风中文 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

如果说“感知机”是单个的神经元,那么“多层感知机”就是将分散的神经元,连接成了网络。

在输入层和输出层之间,再加入若干层,每层若干个神经元。

然后每一层的每个神经元,与下一层的每个神经元,都通过权重参数建立起连接……

层与层之间,完全连接。

也就是说,第i层的任意一个神经元,一定与第i+1层的任意一个神经元相连。

这就是多层感知机,简称MLP。

但仅仅简单组合在一起,还不算真正的“人工神经网络”,必须对“感知机”的基本结构,做出一定的改进。

首先,必须加入隐藏层,以增强模型的表达能力。

隐藏层可以有多层,层数越多,表达能力越强,但与此同时,也会增加模型的复杂度,导致计算量急遽增长。

其次,输出层的神经元允许拥有多个输出。

这样模型就可以灵活地应用于各种分类回归,以及其他的机器学习领域,比如降维、聚类等。

此外,还要对激活函数做出扩展……

前一篇“感知机”论文中,主要使用的是阶跃函数sign,虽然简单易用,但是处理能力有限。

因此神经网络的激活函数,一般使用其他的非线性函数。

备选的函数有很多:sigmoid函数,tanh函数,ReLU函数……

江寒逐一进行了分析。

通过使用多种性能各异的激活函数,可以进一步增强神经网络的表达能力。

对于二分类问题,只需要一个输出神经元就够了。

使用sigmoid作为激活函数,来输出一个0到1之间的数值,用来表示结果为1的概率。

对于多类分类问题,一般在输出层中,安排多个神经元,每个分类一个。

然后用softmax函数来预测每个分类的概率……

描述完结构之后,就可以讨论一下“多层感知机”的训练了。

首先是MLP的训练中,经典的前向传播算法。

顾名思义,前向传播就是从输入层开始,逐层计算加权和,直到算出输出值。

每调整一次参数值,就需要重头到尾重新计算一次。

这样运算量是非常大的,如果没有强大的硬件基础,根本无法支撑这种强度的训练。

好在现在已经是2012年,计算机性能已经足够强悍。

前向传播无疑是符合直觉的,缺陷就是运算量很大,训练起来效率比较差。

与“感知机”的训练相比,MLP的训练需要引入损失函数和梯度的概念。

神经网络的训练,本质上是损失函数最小化的过程。

损失函数有许多种选择,经典的方法有均方误差、交叉熵误差等,各有特性和利弊。

整个训练过程是很清晰的。

先随机初始化各层的权重和偏置,再以损失函数为指针,通过数值微分求偏导的办法,来计算各个参数的梯度。

然后沿着梯度方向,以预设的学习率,逐步调整权重和偏置,就能求得最优化的模型……

写完这些就足够了,再多的内容,可以安排在下一篇文章里。

不过,江寒想了想,觉得这篇论文的内容,还是有点过于充实。

仔细琢磨了一下,干脆将其一分为二。

多层感知机的结构和前向传播的概述部分,单独成篇。

神经网络训练中,关于激活函数和损失函数讨论的部分,再来一篇。

然后分开投稿,这样不就可以多拿1个学术点了?

反正学术点又不看字数……

当然,这两篇论文都必须以前一篇的感知机为基础,分别进行阐述,而不能互为前提、互相引用。

这样就需要多动点脑筋了。

江寒又花了一个多小时,才将它们全都补充完整,并丰满起来。

接下来校队、润色一番后,翻译成英文,转换PDF……

投稿的时候,江寒仔细琢磨了一下,在三区里选了两家方向对口的期刊,投了出去。

没有选择影响因子更大的二区或一区期刊。

因为二区以上的期刊,虽然影响因子更高,发表后收获的学术点也多。

但发表难度太大,万一被打回来,再重新投递……

时间耽搁不起。

要知道,江寒只有三个月的时间。

一系列操作下来,差不多就到了10点半。

江寒脱掉外衣,去洗了个澡,然后换上睡衣。

忙了一下午带一晚上,直到这时才闲了下来。

然后他就想起了夏雨菲,也不知道她下午过得好不好,开不开心?

一股深切的思念,从心底涌出。

拿过手机,指纹解锁。

这才发现,有好多条未读微信。

写论文的时候太投入,根本听不到提示音。

点进夏雨菲的聊天界面,就看到了一排文字消息。

“在哪呢?”

“终于写完作业了,好累啊。”

“你在忙什么?”

“看来真的很忙,都没时间看微信了。”

“先睡了,明天还要上学……”

……

除了第一条是放学时间发来的,后面几条都来自10点之后,差不多5分钟一条。

“这傻姑娘,我没回复微信,也不说拨个电话或者语音通话……”

江寒叹了口气,发了个表情图过去。

夏雨菲很快就回复:“忙完了吗?”

江寒微微一笑。

这个时间她还没睡,莫非在一直等着我回复?

前一阵天天哄她上床,不会已经养成了习惯吧?

一天不哄,就睡不着……

“嗯,正准备休息,刚上床。”江寒回复。

夏雨菲:“那你赶紧休息吧,别太劳累了。”

江寒笑了笑,拨了个语音通话。

“喂?”夏雨菲秒接。

江寒声音温和:“想我了没?”

“没有。”

江寒微微一笑。

否认得这么干脆?

那就是想了。

女孩子的话,有时候就得反着听……

“想我你就打个电话,要不拨个语音通话,微信我有时不能及时看到。”江寒温和地嘱咐。

夏雨菲沉默了一小会儿,低声说:“我担心你在忙,别再耽误了你的正事……”

江寒笑了笑:“你要是一直都这么懂事,我可就有点舍不得欺负你了啊。”

夏雨菲脸一红。

他所说的“欺负”,不知道到底是哪种“欺负”?

那自己以后,到底是应该始终这么“懂事”,还是偶尔也“不懂事”一次呢?

“你在哪了?”夏雨菲不敢深想,就没话找话。

“酒店里。”江寒实话实说。

“嗯?”夏雨菲有点意外,“怎么没回寝室?”

“寝室里有点闹,我想专心研究点东西。”江寒回答。

“哪家酒店?”夏雨菲问。

“星河。”

“条件怎么样?”夏雨菲又问。

“还行。”江寒回答。

“你刚才说什么?”夏雨菲好像没听清楚。

“我说还行。”江寒稍微提高音量。

“什么?”夏雨菲仍然没有听清。

“信号怎么忽然变差了……”

那边嘀咕了一声,然后通话就突然中断了。

江寒正打算重拨,一个视频通话的邀请,忽然跳了出来。

视频……

不会是学人家查岗吧?

暴风中文推荐阅读:反腐风云之收官之战重生之权臣的掌中娇和亲公主之冷霸汗王的心尖宠大梦我仙诀食香离谱!谁家召唤师开局召唤龙王总裁大人,V587!我的老爹是重生花神不花小王公锦鲤少女逃荒种田二十五岁才激活神豪系统?开局被富婆包围,校花:那我走?让你扮演胡桃,你把全网当客户?七公子1腹黑老公,严肃点!女主请自重,我真的只想刷奖励啊火葬场奇谈小时候救的校花,长大后她倒追我蛇蝎毒妃:本宫不下嫁换嫁八零:新婚夜队长起来洗床单暴君爹爹的团宠小娇包灾难艺术家溺宠俏妻:傲娇总裁狠狠爱全民女神:重生腹黑千金穿成恶毒后娘后她带崽野翻了!渣男系统:在恋爱游戏里大放异彩替嫁神医:腹黑世子,甩不掉带一帮靓妞去修仙我官场崛起,退婚的女友开始倒追黄金庭院:从灵开始的现世生活不凡法师都市魔神:渡劫失败,夺舍重修娱乐圈最强替补工厂里的夫妻都市之神帝驾到重生了,此时不浪何时浪邻居是热芭?我有个大胆的想法!欺骗世界,我打造了现代超凡文明妻子背叛:摇身一变成太子至高使命分身强度拉满,我杀穿高武世界修真三千年,校花竟是我老婆嫡女虐渣手册国庆回家多了个姐姐大小姐失忆后,前任纷纷回头了阿姨,你也不想这事被孩子知道吧重生之我只想做个贪财好色的俗人重生1978:我的媳妇是女知青妖女满堂?明明是仙子忠诚!天师莫十七重生77:一根鱼竿开启财富人生
暴风中文搜藏榜:我成了五个大佬的白月光舞动娱乐圈夺梦九帝斩天诀直上青云:从高考落榜开始蜜宠娇妻:BOSS夫人拽又甜每天一个战神技能华枝春满隋末扬旌都市修真:无敌杀伐开局操作蝙蝠侠重生60年代开始奋斗盛宠娇妻理论上可行东京大律师:开局律所破产苟不住的空间主豪门盛宠:司少,轻宠混世龙医这趟穿越有点险美女校花的全能保镖勒少的心尖萌妻婚后交锋之辣妻难驯重生87退婚后,前妻一家急疯了嫡女凶猛都市极品小仙医风水:姐,我不想努力了入狱成为天机神算,国家请我出山冥公子濒死病人,一首大不为震惊全网穿成男神电脑怎么破现代都市的鉴宝王者农门旺女:皇后,快来给朕抱抱!不敢在群里喊老婆,怕她们全回话重活之逍遥大明星重生空间之媳妇逆袭挂机修炼的我不敢躺平风雨兼程度十年从四合院开始的操蛋人生恶魔99次蜜吻:老公,宠太猛透视神医女婿天才萌宝,妈咪一个亿龙影战神:王者归来爱上女处长:一念翻身原神之古雨魔神我重生断绝关系,你们还没完了都市之绝世高手穿书后病娇暴君只在我怀里撒娇娇拍卖缅北噶腰团伙,警察关注我重生后我成了地产大亨群众官念
暴风中文最新小说:民国恶女求生游戏苟分日常七零:娇气包大小姐随军闹翻天六零娇娇作精,糙汉老公带我躺赢前夫处处护青梅,重生改嫁他疯了被换命格后,玄门大佬杀疯了撩倒五个男主后,娇美寡妇跑路了刚大一就与女神老师被强制结婚逃荒有空间,嫁绝嗣糙汉一胎多宝守寡后,我逼疯了满朝文武去种田八零:换嫁小渔村,我成全家团宠重生八零小豆丁,手握空间聊天群SSSSSSSSSSSSSS满级神医清穿:救命!太子妃她又在揍人啦锦鲤崽崽穿六零,捡来爹娘宠上天拒绝SSS级天赋被封杀,我成唯一真神凤隐锦杀被抄家流放,飒爽嫡女在边关盖大楼!渣男兼祧吃绝户?改嫁皇叔他急了我的暴君系统天天想噶我老公炽吻失氧侧妃进门我让位,死遁了你疯什么雾色迷津和权臣一夜共感后,我女儿身暴露SSSSSSSSSS级狂龙出狱八零随军:大小姐认错老公被亲哭我是废雌?可哥哥们是大佬六零换嫁,大小姐随军西北赢麻了醉染赤水桃花劫引朱鸾沪上大小姐下乡,闪婚糙汉被宠哭夫君沉迷造反,却有四个忠臣崽崽市井娇厨离婚后,我权势滔天,你哭什么腰软娇娇超会撩,禁欲世子沦陷了都当女帝了,后宫三千很合理吧?狂龙战枭京夜娇宠情劫黑月光她专克病娇乡村花香领证爽约?我转嫁你哥哭什么弹幕剧透,婉拒男模抱紧老公大腿八十岁老太勇闯娇宠虐文回京认亲被嫌,听劝换爹后成团宠无人区:开局肉身点满被流放后,五岁奶团带全家致富灵事录穿书当小妾:炮灰女配选择躺赢绑定预知梦,我靠演戏救偏执对头